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J.  Phys. A: Math. Gen. 15 (1982) 367-379. Printed in Great Britain 

On the solutions of some linear operator non-polynomial 
differential equations 

H D Dimitrov 
Department of Physics, University of Sofia, Sofia 1126, Bulgaria 

Received 29 June 1981 

Abstract. A method is given for solving a class of linear operator non-polynomial 
differential equations, i.e. equations with linear differential operators representing non- 
polynomial functions of the operator of differentiation with respect to the argument of the 
unknown function. Exact solutions of some particular differential equations of such type 
are obtained. As in a previous paper of ours it is also obtained that not all linear operator 
non-polynomial differential equations are of infinite order, i.e. some of them have only a 
finite number of linearly independent solutions, and this concems some equations with a 
great importance in theoretical and mathematical physics. 

1. Introduction 

As is known, the theory of ordinary and partial differential equations, as well as 
theoretical and mathematical physics as a rule deal with and solve equations, each of 
which can be written in the form of an equality to zero of a certain function of the 
arguments of the unknown function, of that function itself and of its derivatives of all 
orders, lower than or equal to a definite finite order, the latter being the order of the 
differential equation (see, for instance, Goursat 191 1, Ince 1926, Kamke 1959, 
Stepanov 1966, Petrovskii 1970, Courant 1962, Morse and Feshbach 1953, Murphy 
1960, Babich et a1 1964, Vladimirov 1976). Comparatively few papers until now have 
been devoted to infinite systems of differential equations (see, for example, Valeev and 
Zhautikov 1974), and with regard to the theory of linear difference equations Gel’fond 
(1951,1967) considered a definite type of linear differential equations of infinite order 
with constant coefficients. However, in a number of fields of theoretical physics, such as 
the theory of solids, the relativistic quantum theory and others, one must often consider 
and solve linear equations with non-polynomial differential operators, i.e. operators 
representing given non-polynomial functions of the operators of differentiation with 
respect to the arguments of the unknown function. Besides, it is considered that the 
operators of such type have a non-local character, hence the solving of the equations is 
accompanied by serious mathematical difficulties. 

In the present paper a method for solving linear operator non-polynomial diff eren- 
tial equations is proposed. Some particular cases of such operator non-polynomial 
differential equations are of great interest in theoretical physics since they serve to 
describe important physical phenomena. It is also obtained that not all non-polynomial 
differential operators are non-local ones (Dimitrov 1981) and this concerns some 
operators with a great importance in theoretical and mathematical physics (see, for 
instance, Bjorken and Drell 1964, Ziman 1972). 
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368 H D Dimitrov 

2. General consideration of a linear ordinary differential equation 

Let F ( z )  be an arbitrary given (in general multivalued) holomorphic function in the 
whole complex z plane, possibly, with the exception of a set of isolated singular points 
zi , j = 1 ,2 ,3 , .  . . , which can be also branch ones. Then, consider an ordinary 
homogeneous differential equation of the type 

i l l  
where y is the unknown function of the real variable x,  a is a constant, F(qi(x))  is a 
differential operator which is obtained from F ( z )  by the substitution of z with the linear 
(polynomial) differential operator of Zth order qr(x) t ,  

(0)  

L ( Y )  = [F(qr(x)) +f(x)- aIY = 0 

qr(x)=D'+g(x)  D = d/dx, (2) 
while f ( x )  and g(x) are given functions of x. We shall consider separately only the cases: 
(i) g ( x )  = 0, I = 1, and f ( x )  is a rational function; (ii) f ( x )  = 0, and g ( x )  is an infinitely 
differentiable function. 

The solutions of equation (1) in the case (i), which are defined in some interval I of 
the variable x, will be sought with the help of the Laplace transformation, i.e. in the form 
of the following integral representation (Goursat 1911, ch 20, Kamke 1959, part 1, ch 
5 ,  Morse and Feshbach 1953, ch 5 )  

where C is a path of integration (independent of x )  in the complex T plane assuring the 
existence of the integral, while X ( T )  is a non-zero in some neighbourhood G of the path 
C holomorphic function satisfying an equation representing the Laplace trans- 
formation of the equation (1). Let f(x) have the form 

(4) f(x) = p m  ( x ) l  Qn 

where Pm(x) and Q,(x) are polynomials of degrees m and n, respectively, 
m n 

w = O  " = O  
Pm(x)= c a /  Q , ( x ) =  b,x". ( 5 )  

Now, in order to find the equation for the function x(T),  the operator function F(D)  will 
be expressed as a series in terms of powers of the operator D - zo  for a value zo 
( zo  # zp), j = 1,2,3,  . . . ) of the complex variable z, so that we shall write 

Thus, with the help of the expressions (4) and ( 5 )  and the representation (6) in the 
considered case the equation (1) is written in the form 

t Note that when the function F ( z )  is not a polynomial (in which case we are interested in the present paper), 
then any equation of the type (1) is considered in literature as a differential equation of infinite order but we 
show that such an equation does not always have infinitely many linearly independent solutions, i.e. it may be 
a differential equation of finite order (see also Dimitrov 1981). 
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On the basis of the equation (7), we determine the linear differential form (see, for 
instance, Kamke 1959, part 1, ch 5 )  

Then we have 

MT(eXT) = Lx(exT). (9) 

Substituting (3) in (7), and taking into account (6), (8) and (9), we obtain 

where MT (x) is the differential form conjugate to MT(u), and 

(11) 

Now it is clear from (10) that the function (3) will be a solution of equation (1) when the 
amplitude function x ( r )  satisfies the following Laplace transform equation in G t 

and the path of integration C is chosen so that the function V(x, r )  defined by (11) 
should return to its initial value having passed along it. In this way, the problem of 
solving differential equation (1) is reduced to the problem of solving differential 
equation (12) which is of finite order, equal to max(m, n), and after that to pick out all 
suitable paths of integration in the formula (3) so that as a result of integration over each 
of them a linearly independent solution of the equation (1) should be obtained. 

In the case (ii) we shall briefly consider only the problem for finding the eigenvalues 
a and their corresponding eigenfunctions y, of the operator F(ql(x)) under given 
boundary conditions. It is clear that when, regardless of the order of the operator L,, 
these boundary conditions are related only to values of the function y and its derivatives 
of order not greater than (I - l ) ,  then the eigenfunctions of the differential operator 
q (x )  for its respective eigenvalues A, might be considered as eigenfunctions yn, i.e. 

(13) 

Moreover, for the corresponding eigenvalues a, from (1) (when f(x) = 0), (6) and (13) 
we obtain 

a = F(A). (14) 

41 (X )Y, (XI = AY,  (X 1. 

t Note that if the path of integration C is a closed curve, then instead of zero in the right-hand side of the 
equation (12). more generally (in accordance with the Cauchy integral theorem) we may write an arbitrary 
given function w (7) which is holomorphic on C and in the region surrounded by C (on the Riemann surface of 
the integrand in (3)). By using such a function w ( T ) ,  however, it is possible to avoid the appearance of the 
Dirac delta function at intermediate stages of the solving of some differential equations. 
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For example, in the case 1 = 1 and when boundary conditions are not imposed, we 
find from (2) and (13) 

y, = constant exp[ $( Ax - 1: dx g(x))] 

for possible values of A all complex numbers. When the solutions of the problem 
concern a given finite interval I = [XI, XZ] under boundary conditions of the form (see, 
for instance, Kamke 1959, part 2, ch 3) 

ya(xl) = yoyn(x2) 
where yo is a constant, then there exists an infinite discrete set of complex eigenvalues A, 
determined by the formula 

k = 0, *l, *2,.  . . . I 1 
x2-x1 

A = A k = -  [ IxY dx g(x) - a In yo+ 27ricuk 

Therefore, the eigenvalues a and their respective eigenfunctions y ,  in this case, in view 
of (14) and (15), will be 

k = 0, *l ,  * 2 , .  . . I 

Note that in general the exposed Laplace method is applicable also for solving a class 
of non-homogeneous linear differential equations (including a corresponding class of 
partial differential equations), and, in particular, the problem for the eigenfunctions in 
case (ii) is solved in an analogous way when we have a more complicated differential 
operator 4 , ( x )  of finite order 1 instead of the type (2). So, the solutions of a non- 
homogeneous differential equation, which is obtained from (1) by putting a non- 
homogeneous term h ( x )  on the right-hand side, in case (i) are also defined by the 
formula (3), where the amplitude function X(T) is a solution of the equation (12), but 
now the path of integration C must be chosen so that for the function (1 1) the condition 

would be satisfied. 

3. Solutions of some particular differential equations 

Now we shall seek the solutions of several operator non-polynomial differential 
equations of type (1). First we shall consider the equation 

where cu is a real positive constant, while p and a are complex constants in general. In 
this case the equation (12) assumes the form 

dX 1 p- + ( a - -) x = 0 
dT a T + 1  
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whence we obtain 

X ( T )  = constant(ar+ I)''*' exp(-a.r/p). (18) 

Thus, from (3) and (18), for the solution of the equation (16) in the integral form, when 
x E I = (-a, a), we find 

where the path of integration C should be chosen so that the function Vl(x, 7) = 
X ( T )  e": defined by (ll), should return to its initial value having passed along it. For 
example, if 0 <Re  p, then as a path of integration C, for x C Re(a/p), one can choose 
the part of the real axis of the complex r plane defined by -a-' 6 Re T C a, while for 
Re(a/p) C x ,  the remaining part of the same axis for which -a < Re T S -a-', and in 
both cases we find from (19) 

y = constant e-x/"{(x - a / p )  sgn[x -Re(~/p)]}-'-'/"~ 

Note that in the case /I = 0 we have from (17) 

x # Re(a/p). 

X ( T )  = constant S (20) 

where S ( z )  is the Dirac delta function of a complex variable z.  Then, using the 
representation 

and choosing for C an arbitrary closed curve surrounding only one of the two poles of 
the function (21) for z = a - ~ / ( ( Y T +  1) (so that the other pole will be outside C), it is 
obtained right away from (3), (20) and (21) 

y = constant exp - (iff;? * 
As a second example we shall consider the equation 

where for simplicity it will be assumed that a, a and y are real constants, and the sign 
(i.e. the branch) of the square root denotes its absolute eigenvalues. This equation will 
be rewritten in the form 

d2 1/2 

fx [ ( 1 + ff ;ir$) - a]  y - yy = 0 

where the upper (lower) sign in front of x is to be used if 0 < x ( x  < 0). Moreover, for 
equation (23), the function (11) and the equation (12) become 

vZ(x, 7 )  =exT(v'iTi7-a),y(7) (24) 
and 
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The solution of the equation (25)  is as follows: 

constant 
X = J i T 2 - U  

In this way, the two linearly independent solutions of equation (22) for x E I = (-00, 00) 

can be found by substituting the function (26) in the integral formula (3) and by 
choosing the path of integration C so that, having passed along it, the function (24) for a 
function x from (26) should return to its initial value. The solutions, however, will be 
obtained in a more convenient form by accomplishing first the substitution 

Y = x d x )  (27) 

in the equation (22) and after that, applying the Laplace method, we find the solutions 
of the obtained equation for the function 77, namely 

a 

41 + a  d2/dxz dx 

For this purpose, we shall write 

instead of (3). With the help of the Laplace transformation (29) from (28) we obtain the 
following equation for the function xl :  

(,iit;;;z-.)~*-yxl=O. d r  

Besides, the condition for the choice of the path of integration C’ in (29) is reduced to 
the requirement of the function 

to return to its initial value when it passes along it. From (30) we find for the function xl,  

qi-ya/&iGZj I x1 =constant 

2i-y -1(1 +irJi)”’] xexp f-tan - [ &  1 - i r J a  



Linear operator non-polynomial differential equations 373 

Thus, for the solutions of the equation (22) for x E I = (-a, a), in view of (27), (29) and 
(32), we get 

y = constant x 

1 - i r J a  

Here it is to be noted that because of the second order of the differential operator 
41 +a d2/dx2 (Dimitrov 1981), by suitable choices of C' in (33) (or of C in (3) when 
X ( T )  is given by (26)), it is possible to obtain two and not more than two linearly 
independent solutions of the equation (22). 

As an illustration, for a = -1 and 0 < y we shall obtain the eigenvalues a and their 
respective (bounded and one-valued continuous together with their first derivatives) 
eigenfunctions y ,  of the operator 41 -d2/dx2- y/lxl under boundary conditions 
y a ( f a )  = 0. In this case, we have from (33) 

1 - a[(l - T)/(l+ ?)] 1/2 + J1-h)'"lG 
1 - a [( 1 - T ) / (  1 + r ) y  - J m  

y = constant x 

x exp{xr * 2 y tan-'[(l- r)/(1 + T)]~ '~) .  (34) 
From (30), (32) and (34) it is clear, for example, that when a 2  < 1 and 0 < ax, the path of 
integration C' can be chosen with origin at the point 7 = T- = and after going 
round the point r = r+ = -41 - a , it would return back to its initial point r-, while for 
ax < 0, this can be done in the same way, but with an interchanged role of the points 
r = r+ and T = T-. Note that the integrand expressions in (33) and (34) are, in general, 
multivalued functions, hence, it is conditionally assumed for them that the powers of the 
complex magnitudes at each point are chosen to have arguments, smallest in absolute 
value. In the case we are concerned with, obviously, it is necessary to have 

2 

ya/- = n n = 1 ,2 ,3 , .  . . (35) 
in order to satisfy the conditions for the eigenfunctions mentioned above (for a 2  < 1). 
In this way, the eigenvalues a will be 

(36) 2 2 -1/2 a = a , = n ( y  + n  ) n = 1 , 2 , 3 , .  . . 
while we find from (34) and (35) for their corresponding eigenfunctions ya  = yn with the 
help of the Cauchy integral formula 

1 - a,[(l - 7)/(1+ 7 ) ] 1 / 2 + G  

1-a,[(l - r ) / ( l + T ) ] 1 / 2 - G  
y = y ,  = constant x lim - 

x exp{xr * 2y tan-'[(l- T ) / ( I +  ~ ) I ~ / ~ } J .  

In particular, for n = 1, from (36) and (37), we have 

(37) 

1 
y1= constant x exp 

a1 =pT 
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As a third example we shall consider the equation 

F(d/dx)y + (Px - U ) Y  = 0 

where a and p are constants. In this case the function (1 1) and the equation (12 j assume 
the forms, respectively 

V3(x, 7 )  = e"'i((7) (39) 
and 

P d x / d ~  - [F(T) - a]x = 0. 

Thus, for the solutions of the equation (38) we obtain from (3) and (40) 

and the choice of the path of integration C must be done so that the function (39), i.e. 
the integrand in (41) should return to its initial value when it runs along it. Obviously, 
for fixed values of a and /3 the solutions (41) are determined from the particular form of 
the prescribed function F(7). Moreover, the already considered equation (16) is a 
partial case of the equation (38). As another particular example of the equation (38) for 
F(d/dx) = d2/dx2, we find from (41) 

y = constant dT exp[(x -a/@). + T ~ / ~ P ]  (42) 

where the path of integration C should start and end in the infinitely far points of these 
domains of the plane of the complex variable T,  for which R e ( ~ ~ / p )  < 0. In this way, 
from (42) only two linearly independent solutions are found, which, with exactness to a 
constant factor, represent the well known Airy functions Ai( z )  and B i ( z )  for z = 
u / P " ~  - Px (see, for instance, Magnus et a1 1966) 

I, 

For F(d/dx) = exp(A dldx), where A is a constant, we obtain from (41) after the 
substitution of the integration variable T with U = AT: 

y =constant 1, du exp[(x--)-+-e!'] a u  1 
P A A P  

(43) 

and, besides, in order that the function (39) should return to its initial value when it runs 
along the path of integration C, the latter should start and end at points at infinity of the 
domains of the plane of the complex variable U ,  for which we have 

It is clear that when AP is a real negative number, these domains are determined by the 
inequalities 

O s R e u < c c  (2m - $)IT < Im U < (2m + $)T m = O , * l , * 2 , . * ,  (44) 

while when A@ is a real positive number, they are determined by the inequalities 

OsReu<LY) (2m +$IT < ~ m  U < i2m +$IT m =0,  *l., * 2 , .  . . . (45) 
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Hence, in the first case, in view of (44), the path of integration C in (43) can be chosen, 
for example, so that when it passes along it Re U should vary from +CO to 0 for 
Im U = 27rm ( m  # 0) ,  after that Im U should vary from 27rm to 0 for Re U = 0, and 
finally, Re U should vary from 0 to +CO for Im U = 0, while in the second case, in 
accordance with ( 4 3 ,  this can be done in such a way, for instance, that Re U should vary 
from +OO to 0 for Im U = ( 2 m  + l ) ~ ,  after that Im U should vary from (2m + l )7r to 7r for 
Re U = 0, and, finally, Re U should vary from 0 to +CO for Im U = 7. In this way, in both 
cases, from (43) we obtain a system of infinite number of linearly independent solutions 
of the equation (38) for an operator F(d/dx) = exp(A dldx), which are represented in 
the following integral forms 

U e" 
0 AP 

m 

y = Y m  = A m [  [ 1 - e x p ( T ( x  27rim - u / P ) ) ]  du exp( (x -u/P)-+-)  

cos U U sin U + lo2" du exp [ hp + i ( (x - a / @ )  - + - + 
A AP 

m = *l, *2, *3,.  . . , A@ CO 

and 

y = y ,  = B, { exp [ :( x - i)] [ 1 - exp ( y ( x  - a / @ ) ) ]  lom du exp [ (x -A) !-TI 
P A A P  

cos U + [:"+l)T d u exp [ hp + i ( (x - a/P ) 

n = *l, *2,  *3,.  . . , O C A @  

where Am and B, (m,  n = *l, *2,  *3, . . . ) are arbitrary constants. Therefore, for a 
transcendental operator F(d/dx) = exp(A dldx), in view of the theorem proved in the 
previous paper of ours (Dimitrov 1981), the differential equation (38) is of infinite 
order. Naturally, here we could consider the solutions of the equation (38) for many 
other concrete types of the operator F(d/dx), but this will not be done since the method 
of obtaining these solutions is already entirely clear. 

As a fourth example of solving an equation of the type (l), we shall find the solutions 
of the equation (see the paper of Zhidkov et a1 1970) 

[cosh(i d/dx) + U(x) - a ] y  = 0 o c x  

where 

0 when x C (Y 

when (Y < x  U(x)= U 0 (47) 

while a, a and U. are real positive constants and x # a. We find the following equation 
for the function X ( T )  from (12), (46) and (47): 

[ C O S ~ + U ~ ~ ( X - - ) - U ] X = O  (48) 
where 

when x 0 
e ( x ) =  when 0 x. 
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Moreover, for the equation (46) the function (11) is equal to zero. So, we have from 
(48) 

(49) 
and the path of integration C in (3) might be chosen in consecutive order as an arbitrary 
closed curve surrounding only one of the two poles of the representation (21) of the 
Dirac delta function in (49), corresponding to each of the zeros of the argument of that 
function (so that the other pole will be outside C). Obviously, for the zeros of the 
argument of the Dirac delta function in (49), we have 

x = constant S(cos T + U&(x - a )  - a )  

7 = 7, = COS-'[U - uoe(X - a ) ]  + 2 7Wl n =o, *1, *2, * . . x # CY. 

In this way, from (3), (21) and (49) it is obtained that the system of fundamental 
solutions of the equation (46) for x E I I  = (0, a) is as follows: 

y = y, = exp[(cos-' a + 2 m ) x ]  

y = y, = exp{[cos-'(a - U,) + 2 m l x j  

n = o ,  *1, *2 , ,  . , 
while for x E I z  = (a ,  CO) it is formed by the functions 

n=0,*1,*2, . . .  
Therefore, equation (46) is an ordinary differential equation of infinite order (see also 
Zhidkov et a1 1970). 

Finally, as a fifth and more special example for solving a differential equation of the 
type (1) when the operator q ( x )  does not belong to the types (2) we shall consider the 
equation 

L,(y)=[l-A2(-p+--)] d2 2 d 'I2 y - - y = a y  Y 
x x dx X 

where A, y and a are constants and x E I = (0, CO). The solutions of this equation are 
also sought to be in the integral form (3), and in a way analogous to that for obtaining 
equation (12), and taking into account the formula 

(z 2 d ) '  dzsy 2s d2"-'y 
dx2 x d x  dxZS x dxZs-' 

+-- y=-+-- s = 1 , 2 , 3  , . . . . )  

we find that the function X ( T )  should satisfy the differential equation 

9+ ~ x = o  
dr  J I - A ~ ~ ~ - u  

while the choice of the path of integration C should be made so that the function 

vS(x, r )=eXT(J1 - A * T * - u ) x ( T )  ( 5 2 )  

should return to its initial value having passed along it. 
Equation (51) is of the type (30) and hence its solution is found directly from (32) by 

putting a = -A and taking into account only the upper sign in front of y. However, we 
shall write the solution of the equation (51) in the form 

xexp [ Qtan-1 A ( J ~ - A ' T ~ - ~ ) ]  
A T  

(53) 
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In this way, for the solutions of the equation (50), from (3) and (53), after the 
substitution of the integration variable T with z, according to the equality 

A 7  = -22/(2* + 1) 
we find 

y =constant dz-( 
2- 1 z + J ( l  - a ) / ( l +  a )  

( z 2  + 1y z - 4 1  - a)/(l  + a )  C' 

2x2 2y Xexp(-A(~2+1) +-tan-' A z )  

(54) 

( 5 5 )  

where the path of integration C' should be chosen in the plane of the complex variable z 
so that, in accordance with (52) and (54), the function 

va/hG 

z2-1 z + J ( l - a ) / ( l + a )  
Z 2 +  1 z -J(l -a)/(l  + a )  

vi (x, 2) = (- + a) ( 

should return to its initial value having passed along it. When 

O < l + R e (  ) 
A 4 7  

(57) 

for example, we might 
starts from the point z = 
and returns to the point 

C' in ( 5 5 )  a closed curve which 
around the point z = J(1- a)/( l  + a)  
After passing along such a curve, the 

function (56) returns to its initial value of zero. When the condition 

O<l-Re(  ) 
AJ1-;;z 

is fulfilled, the path of integration C' in ( 5 5 )  can be chosen in the same wa but with an 

Moreover, remark that the integrand expression in ( 5 5 )  and the function (56) are, in 
general, multivalued functions of I and therefore it is assumed for them that the powers 
of the complex magnitudes are always chosen to have arguments smallest in absolute 
value. 

Now we shall briefly consider the problem for finding the eigenvalues a and 
eigenfunctions y. of the operator L, in the equation (50) when A and y are real 
numbers. First, this wiIl be done under the condition that the eigenfunctions and their 
first derivatives are bounded and single-valued continuous functions and the boundary 
value condition ya(oo) = 0 is satisfied. The operator L, will then be Hermitian and, 
therefore, its eigenvalues a will be real numbers. From ( 5 5 )  it is seen that in order to 
satisfy the boundary value condition, we must have 

interchanged role of the points z = -J(l- a) / ( l  +a)  and z = - (1 - a ) / ( l  + a). 

n = 1 ,2 ,3 , .  . . Ya 
A m = "  

whence we obtain for the eigenvalues a, 

(59) 

(60) 
2 -1/2 a =a, = [l +(y/An) ] n = 1 , 2 , 3  ,.... 
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Equation (59) implies the fulfilment of the condition (57). That is why, when we choose 
the path of integration C' in the way described above and apply the Cauchy integral 
formula to the obtained integrals, from ( 5 5 )  for the eigenfunctions ya  = y,,, n = 
1,2,3,  . . . , corresponding to the eigenvalues (60), we find 

2xz + 2 tan-' z ) ]  
z2-1 

( z  + z , ) n  exp (- d"-' 
A(zZ+l) A 

where C,, are arbitrary integration constants, while the magnitudes z,, are determined 
by the formula 

In particular, for n = 1, we have from (60)-(62) 

y l  =constant exp -yx 2 ) .  
( A J , i Z +  y 

A 
a1 = 

J A ~ + Y ~  

Further, we shall make a remark that the eigenvalues a of the operator L, in the 
equation (50) for 1 c a , form a continuous spectrum. Then the respective eigen- 
functions y ,  are obtained from ( 5 5 )  for a choice of the path of inte ation C' according 

goin the point z = 

the points z = -d(l- a)/(l + a )  and z = J(1- a)/(l  +a).  In the general case, the 
eigenfunctions y, might be obtained from ( 5 5 )  for a choice of the path of integration C' 
in the form of a double closed contour so that starting from an arbitrary point between 
the points z = -J(l- a)/(l  + a )  and z = J(1- a ) / ( l  + a )  in the plane of the complex 
variable z and in the beginning surrounding these two points in positive direction and 
after that surrounding both points in negative direction we should return again to the 
initial point. 

In conclusion, we shall note that the integral representation method and, in 
particular, the Laplace method, as is known, can be used for finding numerical and 
approximate solutions, which, in view of what was said in the present paper, is also 
related to the solutions of a relatively wide class of the linear operator non-polynomial 
differential equations. 

2 

to (57) and (58)  so that it should start from the point z = - + (1 - a) / ( l  + a )  and after 

- P------ (1 - a)/(l + a) ,  or for a choice of C' in the same way, but with an interchanged role of 
around the point t = J(1 -a)/(l +a), it should return to 
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